Scroll to top
en el

Publications

Missing Outcome Data in Meta-Analysis

Mavridis D, White I.R. Dealing with missing outcome data in meta-analysisResearch Synthesis Methods, 10 (2) (2019), 10.1002/jrsm.1349

Mavridis D, Salanti G, Furukawa TA, Cipriani A, Chaimani A, White IR. Allowing for uncertainty due to missing and LOCF imputed outcomes in meta-analysis. Statistics in Medicine. (https://onlinelibrary.wiley.com/doi/full/10.1002/sim.8009)

Chaimani A, Mavridis D, Higgins JPT, Salanti G, White IR. Allowing for informative missingness in aggregate data meta-analysis with continuous or binary outcomes: Extensions to metamiss. The Stata Journal 2018 18(3) 716-740. (https://onlinelibrary.wiley.com/doi/pdf/10.1002/sim.8009)

Mavridis D, White IR, Higgins JP, Cipriani A, Salanti G. Allowing for uncertainty due to missing continuous outcome data in pairwise and network meta-analysis. Statistics in Medicine 2015;34(5):721-4. Epub 2014 Nov 13. (https://onlinelibrary.wiley.com/doi/full/10.1002/sim.6365)

Mavridis D, Chaimani A, Efthimiou O, Leucht S, Salanti G. Addressing missing  outcome data in meta-analysis. Evidence Based Mental Health 2014;17(3):85-9. (https://onlinelibrary.wiley.com/doi/full/10.1002/sim.8009)

Ranking interventions

Papakonstantinou T, Salanti G, Mavridis D, Rücker G, Schwarzer G, Nikolakopoulou A. Answering complex hierarchy questions in network meta-analysis. BMC Medical Research Methodology. 2022;22(1):47. doi: 10.1186/s12874-021-01488-3.

Salanti G, Nikolakopoulou A, Efthimiou O, Mavridis D, Egger M, White IR. Introducing the Treatment Hierarchy Question in Network Meta-Analysis. American Journal of Epidemiology. 2022;191(5):930-938. doi: 10.1093/aje/kwab278.

Chaimani A, Porcher R, Sbidian É, Mavridis D. A Markov chain approach for ranking treatments in network meta-analysis. Statistics in Medicine. 2020 Oct 26. doi: 10.1002/sim.8784.

Nikolakopoulou A, Mavridis D, Chiocchia V, Papakonstantinou T, Furukawa TA, Salanti G. Network meta-analysis results against a fictional treatment of average performance: Treatment effects and ranking metric. Research Synthesis Methods. 2020 Oct 17. doi: 10.1002/jrsm.1463.

Mavridis D, Porcher R, Nikolakopoulou A, Salanti G, Ravaud P. Extensions of the probabilistic ranking metrics of competing treatments in network meta-analysis to reflect clinically important relative differences on many outcomes [published online ahead of print, 2019 Oct 29]. Biometrical Journal. 2020 Mar;62(2):375-385. doi:10.1002/bimj.201900026

Living Network Meta-Analysis / Designing Future Studies

Nikolakopoulou A, Mavridis D, Furukawa TA, Cipriani A, Tricco AC, Straus SE, Siontis GCM, Egger M, Salanti G. Living network meta-analysis compared with pairwise meta-analysis in comparative effectiveness research: empirical study. BMJ. 2018; 360: k585. (https://www.bmj.com/content/360/bmj.k585)

Nikolakopoulou A, Mavridis D, Egger M, Salanti G. Continuously updated network meta-analysis and statistical monitoring for timely decision-making. Statistical Methods in Medical Research 2016;35(7):978-1000 (https://journals.sagepub.com/doi/abs/10.1177/0962280216659896)

Nikolakopoulou A, Mavridis D, Salanti G. Planning future studies based on the precision of network meta-analysis results. Statistics in Medicine 2016;35(7), 978-1000 (https://onlinelibrary.wiley.com/doi/full/10.1002/sim.6608)

Nikolakopoulou A, Mavridis D, Salanti G. Using conditional power of network meta-analysis (NMA) to inform the design of future clinical trials. Biometrical Journal 2014 ;56(6):973-90. (https://onlinelibrary.wiley.com/doi/abs/10.1002/bimj.201300216)

Extreme Study Effects / Outliers in Meta-Analysis

Petropoulou M, Salanti G, Rücker G, Schwarzer G, Moustaki I, Mavridis D. A forward search algorithm for detecting extreme study effects in network meta-analysis. Statistics in Medicine. 2021;40(25):5642-5656. doi: 10.1002/sim.9145.

Mavridis D, Moustaki I, Wall M, Salanti G. Detecting outlying studies in meta-regression models using a forward search algorithm. Res Synth Methods. 2017 Jun;8(2):199-211. (https://onlinelibrary.wiley.com/doi/abs/10.1002/jrsm.1197)

Multiple Outcome Meta-Analysis

Efthimiou O, Mavridis D, Nikolakopoulou A, Rücker G, Trelle S, Egger M, Salanti G. A model for meta-analysis of correlated binary outcomes: The case of split-body interventions. Statistical Methods in Medical Research. 2017. (https://journals.sagepub.com/doi/abs/10.1177/0962280217746436)

Efthimiou O, Mavridis D, Riley RD, Cipriani A, Salanti G. Joint synthesis of multiple correlated outcomes in networks of interventions. Biostatistics 2015;16(1):84-97. (https://academic.oup.com/biostatistics/article/16/1/84/258780)

Efthimiou O, Mavridis D, Cipriani A, Leucht S, Bagos P, Salanti G. An approach for modelling multiple correlated outcomes in a network of interventions using odds ratios. Statistics in Medicine 2014;33(13):2275-87. (https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.6117)

Mavridis D, Salanti G. A practical introduction to multivariate meta-analysis. Statistical Methods in Medical Research. 2013;22(2):133-58. (https://journals.sagepub.com/doi/abs/10.1177/0962280211432219)

Heterogeneity

Petropoulou M, Mavridis D. A comparison of 20 heterogeneity variance estimators in statistical synthesis of results from studies: a simulation study. Statistics in Medicine. 2017 Nov 30;36(27):4266-4280. (https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.7431)

Pateras K, Nikolakopoulos S, Mavridis D, Roes KCB. Interval estimation of the overall treatment effect in a meta-analysis of a few small studies with zero events. Contemp Clin Trials Commun. 2018 Mar; 9: 98–107 (https://www.sciencedirect.com/science/article/pii/S2451865417300583)

Langan D., Higgins J.P.T., Jackson D., Bowden J., Veroniki A.A., Kontopantelis E., Viechtbauer W., Simmonds M. A comparison of heterogeneity variance estimators in simulated random-effects meta-analyses. Res. Synth. Method; 2018; doi: 10.1002/jrsm.1316 (see: https://onlinelibrary.wiley.com/doi/abs/10.1002/jrsm.1316)

Jackson D., Veroniki A.A., Law M., Tricco A.C., Baker R. Paule-Mandel estimators for network meta-analysis with random inconsistency effects. Res. Synth. Method; 2017; doi: 10.1002/jrsm.1244 (see: https://doi.org/10.1002/jrsm.1244)

Veroniki A.A., Jackson D., Viechtbauer W., Bender R., Bowden J., Knapp G., Kuss O., Higgins J.P.T., Langan D., Salanti G., Methods to estimate heterogeneity variance and its uncertainty in meta-analysis. Res. Synth. Method; 2016; 7(1); 55-79. doi: 10.1002/jrsm.1164 (see: https://onlinelibrary.wiley.com/doi/full/10.1002/jrsm.1164)

Veroniki A.A., Jackson D., Viechtbauer W., Bender R., Knapp G., Kuss O., Langan D., Recommendations for quantifying the uncertainty in the summary intervention effect and estimating the between-study heterogeneity variance in random-effects meta-analysis. In: Chandler J, McKenzie J, Boutron I, Welch V (editors). Cochrane Methods. Cochrane Database of Systematic Reviews 2015;Suppl (see: https://limo.libis.be/primo-explore/fulldisplay?docid=LIRIAS1928093&context=L&vid=Lirias&search_scope=Lirias&tab=default_tab&lang=en_US&fromSitemap=1)

Synthesis of Randomized and Non-Randomized Evidence

Efthimiou O, Mavridis D, Debray TP, Samara M, Belger M, Siontis GC, Leucht S, Salanti G; GetReal Work Package 4. Combining randomized and non-randomized evidence in network meta-analysis. Stat Med. 2017 Apr 15;36(8):1210-1226. (https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.7223)

Publication Bias and Small-Study Effects

Mavridis D, Efthimiou O, Leucht S, Salanti G. Publication bias and small-study effects magnified effectiveness of antipsychotics but their relative ranking remained invariant. Journal of Clinical Epidemiology 2016;69:161-9 (https://www.sciencedirect.com/science/article/pii/S0895435615002747)

Mavridis D, Welton NJ, Sutton A, Salanti G. A selection model for accounting for publication bias in a full network meta-analysis. Statistics in Medicine 2014;33(30):5399-412. (https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.6321)

Mavridis D, Salanti G. Exploring and accounting for publication bias in mental health: a brief overview of methods. Evidence Based Mental Health 2014;17(1):11-5. (http://ebmh.bmj.com/content/17/1/11.short)

Mavridis D, Sutton A, Cipriani A, Salanti G. A fully Bayesian application of the Copas selection model for publication bias extended to network meta-analysis. Statistics in Medicine. 2013;32(1):51-66. (https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.5494)

Meta-Analysis

Chaimani A, Mavridis D, Salanti G. A hands-on practical tutorial on performing meta-analysis with Stata. Evidence Based Mental Health 2014;17(4):111-6. (http://ebmh.bmj.com/content/17/4/111.short)

Nikolakopoulos S. Misuse of the sign test in narrative synthesis of evidence. Research Synthesis Methods. 2020; 11(5):714-719. https://doi.org/10.1002/jrsm.1427.

Nikolakopoulou A, Mavridis D, Salanti G. Demystifying fixed and random effects meta-analysis. Evidence Based Mental Health 2014;17(2):53-7 (https://search.proquest.com/openview/677d9023d61bda58d4f433ef34de0254/1?pq-origsite=gscholar&cbl=2041886)

Veroniki A.A., Jackson D., Viechtbauer W., Bender R., Bowden J., Knapp G., Kuss O., Higgins J.P.T., Langan D., Salanti G., Methods to calculate uncertainty in the estimated overall effect size from a random-effects meta-analysis. Res. Synth. Meth; 2018; doi: 10.1002/jrsm.1319 (see: https://onlinelibrary.wiley.com/doi/abs/10.1002/jrsm.1319)

Veroniki A.A., Pavlides M., Patsopoulos N. A. and Salanti, G., Reconstructing 2 x 2 contingency tables from odds ratios using the Di Pietrantonj method: difficulties, constraints and impact in meta-analysis results. Res. Synth. Method; 2013, 4:78–94 (see: https://onlinelibrary.wiley.com/doi/abs/10.1002/jrsm.1061)

Network Meta-Analysis

Seitidis G, Nikolakopoulos S, Hennessy EA, Tanner-Smith EE, Mavridis D. Network Meta-Analysis Techniques for Synthesizing Prevention Science Evidence. Prevention Science. 2022;23(3):415-424. doi: 10.1007/s11121-021-01289-6.

Mavridis D, Giannatsi M, Cipriani A, Salanti G. A primer on network meta-analysis with emphasis on mental health. Evidence Based Mental Health 2015;18(2):40-6. (https://ebmh.bmj.com/content/18/2/40)

Veroniki AA, Tsokani S, Zevgiti S, Pagkalidou I, Kontouli KM, Ambarcioglu P, Pandis N, Lunny C, Nikolakopoulou A, Papakonstantinou T, Chaimani A, Straus SE, Hutton B, Tricco AC, Mavridis D, Salanti G. Do reporting guidelines have an impact? Empirical assessment of changes in reporting before and after the PRISMA extension statement for network meta-analysis. Systematic Reviews. 2021;10(1):246. doi: 10.1186/s13643-021-01780-9.

Petropoulou Μ, Nikolakopoulou Α, Veroniki ΑΑ, Rios P, Vafaei A, Giannatsi M, Sullivan S, Tricco A, Chaimani A, Egger M, Salanti G. Bibliographic study showed improving statistical methodology of network meta-analyses published between 1999 and 2015. Journal of Clinical Epidemiology 2017; 82:20-28. (https://www.sciencedirect.com/science/article/pii/S0895435616302566)

Chaimani A, Higgins JP, Mavridis D, Spyridonos P, Salanti G. Graphical tools for network meta-analysis in STATA. PLoS One. 2013;8(10):e76654. doi: 10.1371/journal.pone.0076654. (http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0076654)

Zarin W., Veroniki A.A., Nincic V., Vafaei A., Reynen E., Motiwala S., Antony J., Sullivan S., Rios P., Daly C., Ewusie J., Petropoulou M., Nikolakopoulou A., Chaimani A., Salanti G., Straus S., Tricco A.C. Characteristics and knowledge synthesis approach for 456 network meta-analyses: A scoping review. BMC Medicine; 2017; 15(1):3. doi: 10.1186/s12916-016-0764-6 (see: https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-016-0764-6)

Veroniki A.A., Straus S.E, Fyraridis A., Tricco A.C., The rank-heat plot is a novel way to present the results from a network meta-analysis including multiple outcomes. J. Clin. Epidemiol.; 2016; 16: 00153-0. doi: 10.1016/j.jclinepi.2016.02.016 (see: https://www.sciencedirect.com/science/article/pii/S0895435616001530?via%3Dihub)

Nikolakopoulou A., Chaimani A., Veroniki A.A., Vasiliadis H.S., Schmid C.H., Salanti G., Characteristics of networks of interventions: A description of a database of 186 published networks. Plos One; 2014 22;9(1):e86754 (see: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0086754)

Mills, E. J., Kanters S., Kristian T., Chaimani A., Veroniki A.A. and Ioannidis, J.P.A., The effects of excluding treatments from network meta-analysis. BMJ; 2013; 347:f5195 (see: https://www.bmj.com/content/347/bmj.f5195.long)

Antoniou SA, Koelemay M, Antoniou GA, Mavridis D. (2018). A practical guide for application of Network Meta-Analysis in Evidence Synthesis. European Journal or Vascular and Endovascular Surgery (see: https://www.ejves.com/article/S1078-5884(18)30798-6/pdf )

Inconsistency

Veroniki AA, Tsokani S, White IR, Schwarzer G, Rücker G, Mavridis D, Higgins JPT, Salanti G. Prevalence of evidence of inconsistency and its association with network structural characteristics in 201 published networks of interventions. BMC Medical Research Methodology. 2021;21(1):224. doi: 10.1186/s12874-021-01401-y.

Veroniki A.A., Vasiliadis HS, Higgins J.P.T., Salanti G. Evaluation of inconsistency in networks of interventions. Int J Epidemiol 2013; 42(1):332-345; doi: 10.1093/ije/dys222 (see: https://academic.oup.com/ije/article/42/1/332/699485)

Veroniki AA, Mavridis D, Higgins JP, Salanti G. Characteristics of a loop of evidence that affect detection and estimation of inconsistency: a simulation study. BMC Medical Research Methodology 2014;14:106. (https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/1471-2288-14-106)

Network Meta-Analysis for multi-component Interventions

Tsokani S, Seitidis G, Mavridis D. Component network meta-analysis in a nutshell. BMJ Evidence Based Medicine. 2022:bmjebm-2021-111906. doi: 10.1136/bmjebm-2021-111906.

Efthimiou O, Seo M, Karyotaki E, Cuijpers P, Furukawa TA, Schwarzer G, Rücker G, Mavridis D. Bayesian models for aggregate and individual patient data component network meta-analysis. Statistics in Medicine. 2022;41(14):2586-2601. doi: 10.1002/sim.9372

Petropoulou M, Efthimiou O, Rücker G, Schwarzer G, Furukawa TA, Pompoli A, Koek HL, Del Giovane C, Rotondi N, Mavridis D. (2021) A review of methods for addressing components of interventions in meta-analysis. PLoS ONE 16(2): e0246631. https://doi.org/10.1371/journal.pone.0246631

Del Giovane C, Vacchi L, Mavridis D, Filippini G, Salanti G. Network meta-analysis models to account for variability in treatment definitions: application to dose effects. Statistics in Medicine. 2013;32(1):25-39. (https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.5512)

Factor Analysis / Item Response Theory / Structural Equation Modeling

Mavridis D, Ntzoufras I. Stochastic search item selection for factor analytic models. British Journal of Mathematical and Statistical Psychology. 2014;67(2):284-303. (https://onlinelibrary.wiley.com/doi/abs/10.1111/bmsp.12019)

Mavridis D, Moustaki I. Detecting Outliers in Factor Analysis Using the Forward Search Algorithm. Multivariate Behavioral Research. 2008;43(3):453-75. (https://www.tandfonline.com/doi/abs/10.1080/00273170802285909)

Mavridis, D., and Moustaki, I. (2009), I. The forward search algorithm for detecting aberrant response patterns in factor analysis for binary data. Journal of Computational and Graphical Statistics, 18(4), 1016-1034. (https://www.tandfonline.com/doi/abs/10.1198/jcgs.2009.08060)

Moustaki, I., Joreskog, K. and Mavridis, D., (2004). Factor models for ordinal variables with covariate effects on the manifest and latent variables: A comparison of LISREL and IRT approaches. Structural Equation Modeling, 11, 487-513. (https://www.tandfonline.com/doi/abs/10.1207/s15328007sem1104_1)

Miscellaneous

  • Christogiannis C, Nikolakopoulos S, Pandis N, Mavridis D. The self-fulfilling prophecy of post-hoc power calculations. American Journal of Orthodontic and Dentofacial Orthopedics. 2022 ;161(2):315-317. doi: 10.1016/j.ajodo.2021.10.008.

Panos A, Mavridis D. TableOne: an online web application and R package for summarising and visualising data. Evidence Based Mental Health. 2020 Aug;23(3):127-130. doi: 10.1136/ebmental-2020-300162.

Katsanos AH, Seitidis G, Tsivgoulis G, Mavridis D. Probabilistic Reasoning in Stroke: A Primer to Statistical Literacy. Stroke. 2020 Aug;51(8):e144-e147. doi: 10.1161/STROKEAHA.120.030252.

Mavridis D, Aitken CG. Sample size determination for categorical responses. Journal of Forensic Sciences. 2009;54(1):135-51 (https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1556-4029.2008.00920.x)

Selected Applied Publications

We have conducted several network meta-analyses as well as other analyses of medical data

Veroniki AA, Seitidis G, Stewart L, Clarke M, Tudur-Smith C, Mavridis D, Yu CH, Moja L, Straus SE, Tricco AC. Comparative efficacy and complications of long-acting and intermediate-acting insulin regimens for adults with type 1 diabetes: an individual patient data network meta-analysis. BMJ Open. 2022;12(11):e058034. doi: 10.1136/bmjopen-2021-058034.

Solmi M, Song M, Yon DK, Lee SW, Fombonne E, Kim MS, Park S, Lee MH, Hwang J, Keller R, Koyanagi A, Jacob L, Dragioti E, Smith L, Correll CU, Fusar-Poli P, Croatto G, Carvalho AF, Oh JW, Lee S, Gosling CJ, Cheon KA, Mavridis D, Chu CS, Liang CS, Radua J, Boyer L, Fond G, Shin JI, Cortese S. Incidence, prevalence, and global burden of autism spectrum disorder from 1990 to 2019 across 204 countries. Molecular Psychiatry. 2022. doi: 10.1038/s41380-022-01630-7.

Siafaka V, Mavridis D, Tsonis O, Tzamakou E, Christogiannis C, Tefa L, Arnaoutoglou E, Tzimas P, Pentheroudakis G. The WHOQOL-BREF instrument: Psychometric evaluation of the Greek version in patients with advanced cancer and pain and associations with psychological distress. Palliative Support Care. 2022:1-11. doi: 10.1017/S1478951522001055

Tsivgoulis G, Katsanos AH, Mavridis D, Gdovinova Z, Karliński M, Macleod MJ, Strbian D, Ahmed N. Intravenous Thrombolysis for Ischemic Stroke Patients on Dual Antiplatelets. Ann Neurol. 2018 Jul;84(1):89-97 (https://onlinelibrary.wiley.com/doi/abs/10.1002/ana.25269)

George CM Siontis, Mavridis D, Greenwood JP, Coles B, Nikolakopoulou A, Jüni P, Salanti S, Windecker S. Outcomes of non-invasive diagnostic modalities for the detection of coronary artery disease: network meta-analysis of diagnostic randomised controlled trials. BMJ. 2018; 360: k504. (https://www.bmj.com/content/360/bmj.k504.full)

Antoniou SA, Mavridis D, Hajibandeh S, Hajibandeh S, Antoniou GA, Gorter R, Tenhagen M, Koutras C, Pointner R, Chalkiadakis GE, Granderath FA, Fragiadakis GF, Philalithis AE, Bonjer HJ. Optimal stump management in laparoscopic appendectomy: A network meta-analysis by the Minimally Invasive Surgery Synthesis of Interventions and Outcomes Network. Surgery. 2017 Nov;162(5):994-1005 (https://www.sciencedirect.com/science/article/pii/S003960601730483X)

Leucht S, Leucht C, Huhn M, Chaimani A, Mavridis D, Helfer B, Samara M, Rabaioli M, Bächer S, Cipriani A, Geddes JR, Salanti G, Davis JM. Sixty Years of Placebo-Controlled Antipsychotic Drug Trials in Acute Schizophrenia: Systematic Review, Bayesian Meta-Analysis, and Meta-Regression of Efficacy Predictors. American Journal of Psychiatry. 2017 Oct 1;174(10):927-942. (https://ajp.psychiatryonline.org/doi/abs/10.1176/appi.ajp.2017.16121358)

Terkawi AS, Mavridis D, Sessler DI, Nunemaker MS, Doais KS, Terkawi RS, Terkawi YS, Petropoulou M, Nemergut EC. Pain Management Modalities after Total Knee Arthroplasty: A Network Meta-analysis of 170 Randomized Controlled Trials. Anesthesiology. 2017 (http://anesthesiology.pubs.asahq.org/article.aspx?articleid=2612634)

Palmer SC, Mavridis D, Nicolucci A, Johnson DW, Tonelli M, Craig JC, Maggo J, Gray V, De Berardis G, Ruospo M, Natale P, Saglimbene V, Badve SV, Cho Y, Nadeau-Fredette AC, Burke M, Faruque L, Lloyd A, Ahmad N, Liu Y, Tiv S, Wiebe N, Strippoli GF. Comparison of Clinical Outcomes and Adverse Events Associated With Glucose-Lowering Drugs in Patients With Type 2 Diabetes: A Meta-analysis. JAMA 2016;316(3):313-24. (https://jamanetwork.com/journals/jama/fullarticle/2533506)

Siontis GC, Praz F, Pilgrim T, Mavridis D, Verma S, Salanti G, Søndergaard L, Jüni P,Windecker S. Transcatheter aortic valve implantation vs. surgical aortic valve replacement for treatment of severe aortic stenosis: a meta-analysis of randomized trials. European Heart Journal 2016;37(47):3503-3512 (https://academic.oup.com/eurheartj/article-abstract/37/47/3503/2844993)

Tsikopoulos K, Vasiliadis HS, Mavridis D. Injection therapies for plantar fasciopathy (‘plantar fasciitis’): a systematic review and network meta-analysis of 22 randomised controlled trials. British Journal of Sports Medicine 2016 (https://bjsm.bmj.com/content/50/22/1367)

Siontis GC, Stefanini GG, Mavridis D, Siontis KC, Alfonso F, Pérez-Vizcayno MJ, Byrne RA, Kastrati A, Meier B, Salanti G, Jüni P, Windecker S. Percutaneous coronary interventional strategies for treatment of in-stent restenosis: a network meta-analysis. Lancet 2015;386(9994):655-64. (https://www.sciencedirect.com/science/article/pii/S0140673615606572)

Palmer SC, Mavridis D, Navarese E, Craig JC, Tonelli M, Salanti G, Wiebe N, Ruospo M, Wheeler DC, Strippoli GF. Comparative efficacy and safety of blood pressure-lowering agents in adults with diabetes and kidney disease: a network meta-analysis. Lancet 2015;385(9982):2047-56. (https://www.sciencedirect.com/science/article/pii/S0140673614624594)

Leucht S, Cipriani A, Spineli L, Mavridis D, Orey D, Richter F, Samara M, Barbui C, Engel RR, Geddes JR, Kissling W, Stapf MP, Lässig B, Salanti G, Davis JM. Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis. Lancet. 2013;382(9896):951-62. (https://www.sciencedirect.com/science/article/pii/S0140673613607333)

Diagnostic Test Accuracy Meta-Analysis

Tsokani S, Veroniki AA, Pandis N, Mavridis D. Assessing the performance of diagnostic test accuracy measures. American Journal of Orthodontic and Dentofacial Orthopedics. 2022 ;161(5):748-751. doi: 10.1016/j.ajodo.2021.12.007.

Veroniki AA, Tsokani S, Agarwal R, Pagkalidou E, Rücker G, Mavridis D, Takwoingi Y. Diagnostic test accuracy network meta-analysis methods: A scoping review and empirical assessment. Journal of Clinical Epidemiology. 2022 ;146:86-96. doi: 10.1016/j.jclinepi.2022.02.001.