

Course in Pairwise and Network Meta-Analysis

20-24 October 2025

Synthesizing Randomized and non-randomized evidence

Koutsiouroumpa Ourania

PhD student

UNIVERSITY
of IOANNINA

EVIDENCE
SYNTHESIS
METHODS
STATISTICS TEAM

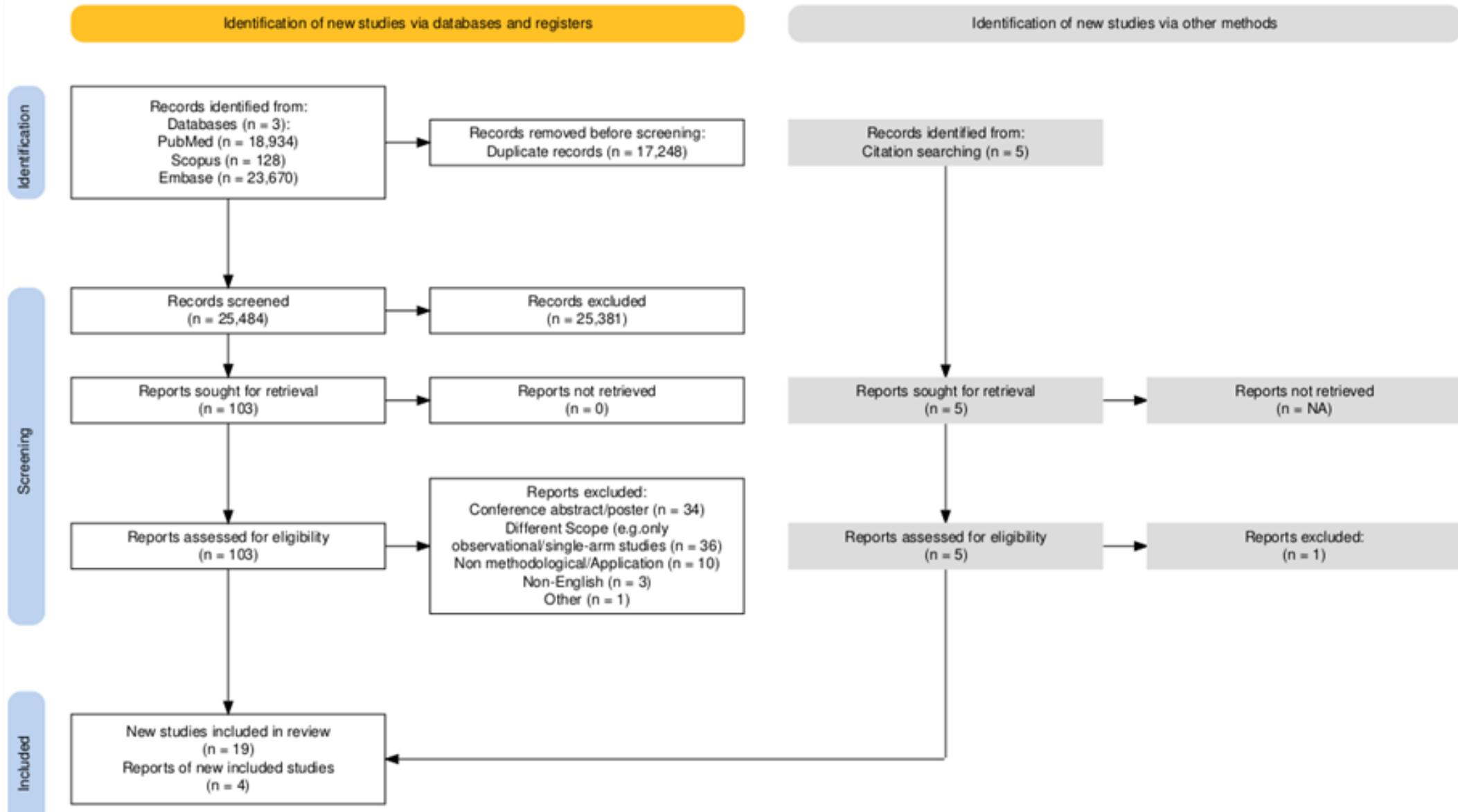
Randomized controlled trials (RCTs)

RCTs are considered the ‘gold standard’

- Participants are randomly assigned to treatment or control groups.
- This randomization helps control for confounders and bias.
- Provides high internal validity (i.e., strong causal inference).

- ✓ Minimizes bias
- ✓ Balances confounding

Non-Randomized Studies (NRS)


Non-RCTs provide *real world evidence* (RWE) and offer valuable insights especially when RCT data are limited.

- Also called observational studies or non-experimental studies.
- No random assignment → so there is potential for selection bias and confounding.
- But they often have better external validity (they reflect real-world practice).

Why combine RCTs and Non-RCTs?

- **Limited RCT evidence:** In some areas, few or no RCTs exist (e.g., rare diseases, surgical techniques).
- **Ethical or practical problems:** Sometimes RCTs can not be done (e.g., smoking exposure).
- **Generalizability:** Non-RCTs can reflect real-world populations better than highly controlled RCTs.
- **Complementary evidence:** Non-RCTs may help explore long-term outcomes, rare events, or subgroups.

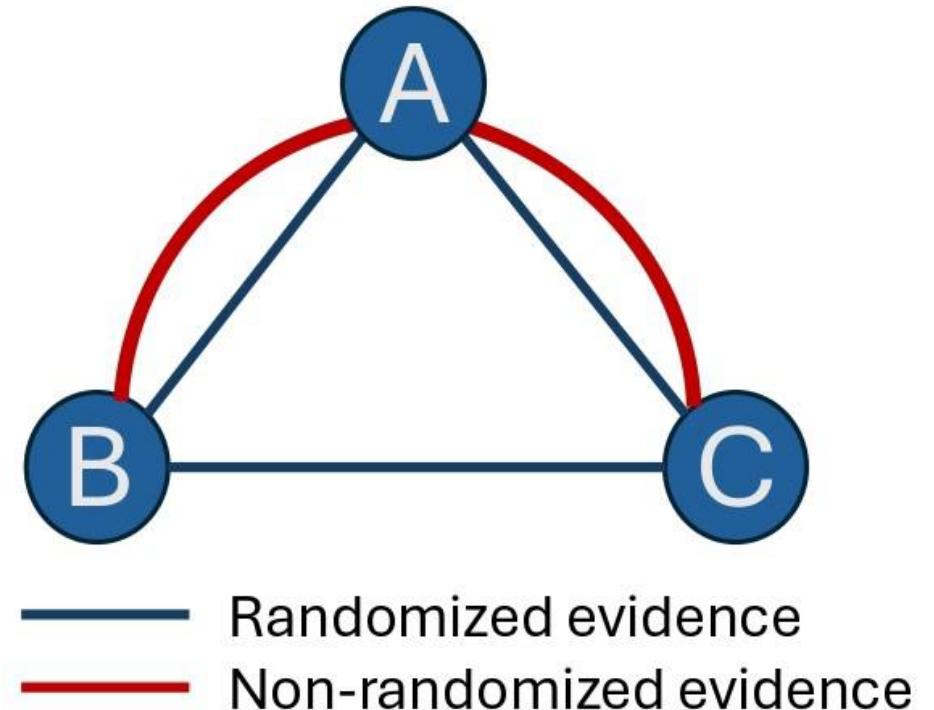
Flowchart

Systematic review findings

Out of the 23 included articles, **17 are methodological** papers focused on the combination of RE and NRE information in MA or NMA, while the remaining 6 were reviews of methods addressing the same topic.

Among these 17 methodological studies:

- ✓ 11 (64.7%) focused on combining RE and NRE in standard MA
- ✓ 5 (29.4%) in NMA alone and
- ✓ 1 (5.9%) addressed both approaches


The majority - 15 articles (88.2%) - adopted a Bayesian framework.

Regarding data types:

- ✓ 13 articles (76.4%) synthesized only aggregated data (AgD)
- ✓ 2 (11.8%) required individual participant data (IPD)
- ✓ 2 (11.8%) incorporated both IPD and AgD

Methods for synthesizing RCTs and NRE in NMA

- The Naïve approach
- Design-adjusted analysis
- Informative priors from NRSs
- A three-level hierarchical model

Naïve approach

Pool all RCTs and NRE together without adjustments

- ✓ Simple and straightforward
- ✓ Increases the amount of data and network
- ✗ High risk of bias, because it assumes RCTs and NRE are equally reliable
- ✗ Results may be dominated by biased observational studies

Mainly as a sensitivity analysis

Design-adjusted analysis

A model that **down-weights NRE** by increasing their **variance** or by including a **bias term**.

$$y_{i,jk} \sim N(\theta_{i,jk} + \beta_i, \frac{s_{i,jk}}{w_i})$$

i : study

β_i : bias term

w_i : precision term $0 < w_i < 1$

Conduct a sensitivity analysis (use of range of values)

Using NRE as prior information

Predictive prior with down-weighted variance

This approach constructs a predictive distribution from NRS estimates and incorporates it a prior for μ_{jk} , but down-weights it by inflating the variance using a factor w_{jk}

$$\mu_{jk} \sim Normal(\hat{\mu}_{jk}^{NRS} + \beta_{jk}, \frac{\hat{V}_{jk}^{NRS}}{w_{jk}})$$

If $\beta_{jk} = 0$ and $w_{jk} = 1$ full trust in NRS

If $w_{jk} \ll 1$, NRE evidence is heavily down-weighted.

✓ Handles uncertainty and possible bias

✗ Requires specification of prior parameters and less useful with few NRS

Using NRE as prior information

Power Prior:

This method down-weights the contribution of NRE by raising its likelihood contribution to a power between $a_i \in [0, 1]$

$$L(\mu|NRE) = \prod_{i=1}^k [L(\mu|NRE_i)]^{a_i}$$

- ✓ Flexible
- ✗ Choosing a_i value can be subjective

Three-level hierarchical model

- First level, (within study differences)

$$y_{i,jk} \sim \text{Normal}(\theta_{i,jk}, s_{i,jk}^2)$$

- Second level, (between study differences)

$$\theta_{i,jk} \sim \text{Normal}(\mu_{jk}^{\text{design}}, \tau^2)$$

- Third level, (between design differences)

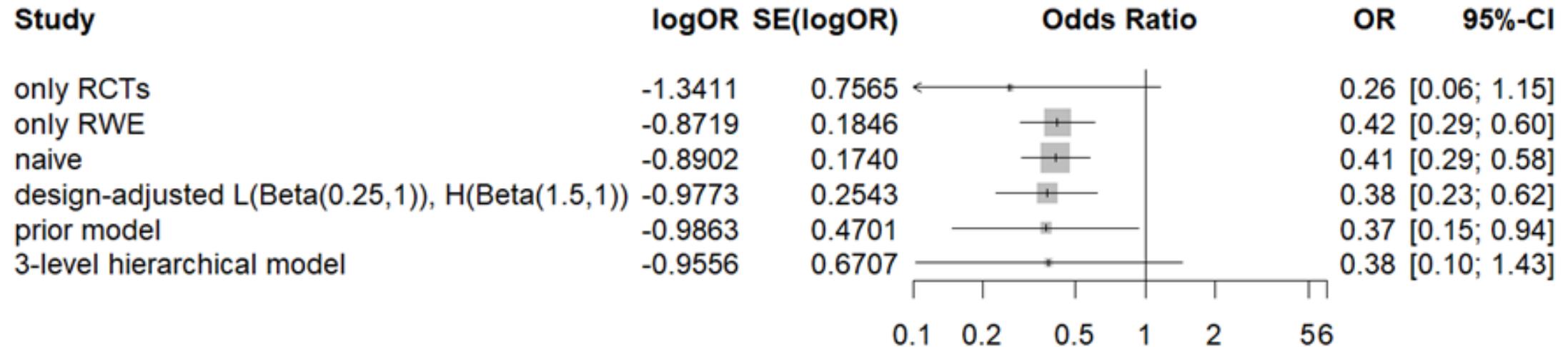
$$\mu_{jk}^{\text{design}} \sim \text{Normal}(\mu_{jk}, \tau_{\text{design}}^2)$$

- ✓ Accounts for design-specific effects and heterogeneity
- ✗ More complex, requires sufficient data per design

Empirical example

P (Population)	Elderly
I (Intervention)	23-valent pneumococcal polysaccharide vaccine (PPV23)
C (Comparator)	Placebo or no vaccination
O (Outcome)	Occurrence of invasive pneumococcal disease

- Design-adjusted analysis:


Low risk of bias ~Beta (0.25,1)

high risk of bias ~Beta (1.5,1)

Finally, randomized clinical trials are not weighted.

No.	Study	LOG(OR)	SE	Total ppv23	Total number of vaccine	Design	Risk of bias
1	Honkanen 1999	-0.9722612	0.8367229	19549	18488	RCT	Unclear
2	Maruyama 2010	-1.9406631	1.5124362	1140	1149	RCT	Low
3	Ortqvist 1998	-1.5178076	1.0965467	793	873	RCT	Low
4	Hechter 2012	-1.0498000	0.8998000	3962	27320	Cohort	High
5	Jackson 2003	-0.5852000	0.2615000	84203	42977	Cohort	Low
6	Ochoa-Gondar 2014	-0.9676000	0.7584000	28662	30000	Cohort	Low
7	Tsai 2015	-1.4271000	0.3342000	229181	229181	Cohort	High
8	Vila-Corcoles 2006	-0.5108000	0.5161000	17401	16504	Cohort	Low
9	Dominguez 2005	-1.1882000	0.2687000	149	447	Case-control	Low
10	Leventer-Roberts 2015	-0.5463000	0.1712000	212	848	Case-control	Low
11	Vila-Corcoles 2009	-1.0850000	0.3416000	94	188	Case-control	Low

Results

References

- [1] O. Efthimiou, D. Mavridis, T. P. A. Debray, M. Samara, M. Belger, G. C. Siontis, S. Leucht, and G. Salanti. Combining randomized and nonrandomized evidence in network meta-analysis. *Statistics in Medicine*, 36:1210–1226, 2017.
- [2] H. Hussein, K. R. Abrams, L. J. Gray, et al. Hierarchical network meta-analysis models for synthesis of evidence from randomised and nonrandomized studies. *BMC Medical Research Methodology*, 23:97, 2023.
- [3] *Falkenhorst G, Remschmidt C, Harder T, Hummers-Pradier E, Wichmann O, Bogdan C. Effectiveness of the 23-Valent Pneumococcal Polysaccharide Vaccine (PPV23) against Pneumococcal Disease in the Elderly: Systematic Review and Meta-Analysis. PLoS One. 2017;12(1):e0169368. Published 2017 Jan 6. doi:10.1371/journal.pone.0169368*

Course in Pairwise and
Network Meta-Analysis

20-24 October 2025

Thank you! Questions?

o.koutsiouroumpa@uoi.gr

SCAN ME

EVIDENCE
SYNTHESIS
METHODS
STATISTICS TEAM