

Extending Network Meta - Analysis to include Non - Randomized Evidence: Results of a scoping review

¹Ourania Koutsiouroumpa, ^{1,2}Katerina Maria Kontouli, ^{1,3,4}Sofia Tsokani, ¹Iro Ntaga, ^{1,5}Georgios Seitidis, ¹Dimitris Mavridis

¹Department of Primary Education, University of Ioannina, Ioannina, Greece

²Faculty of Medicine, University of Thessaly

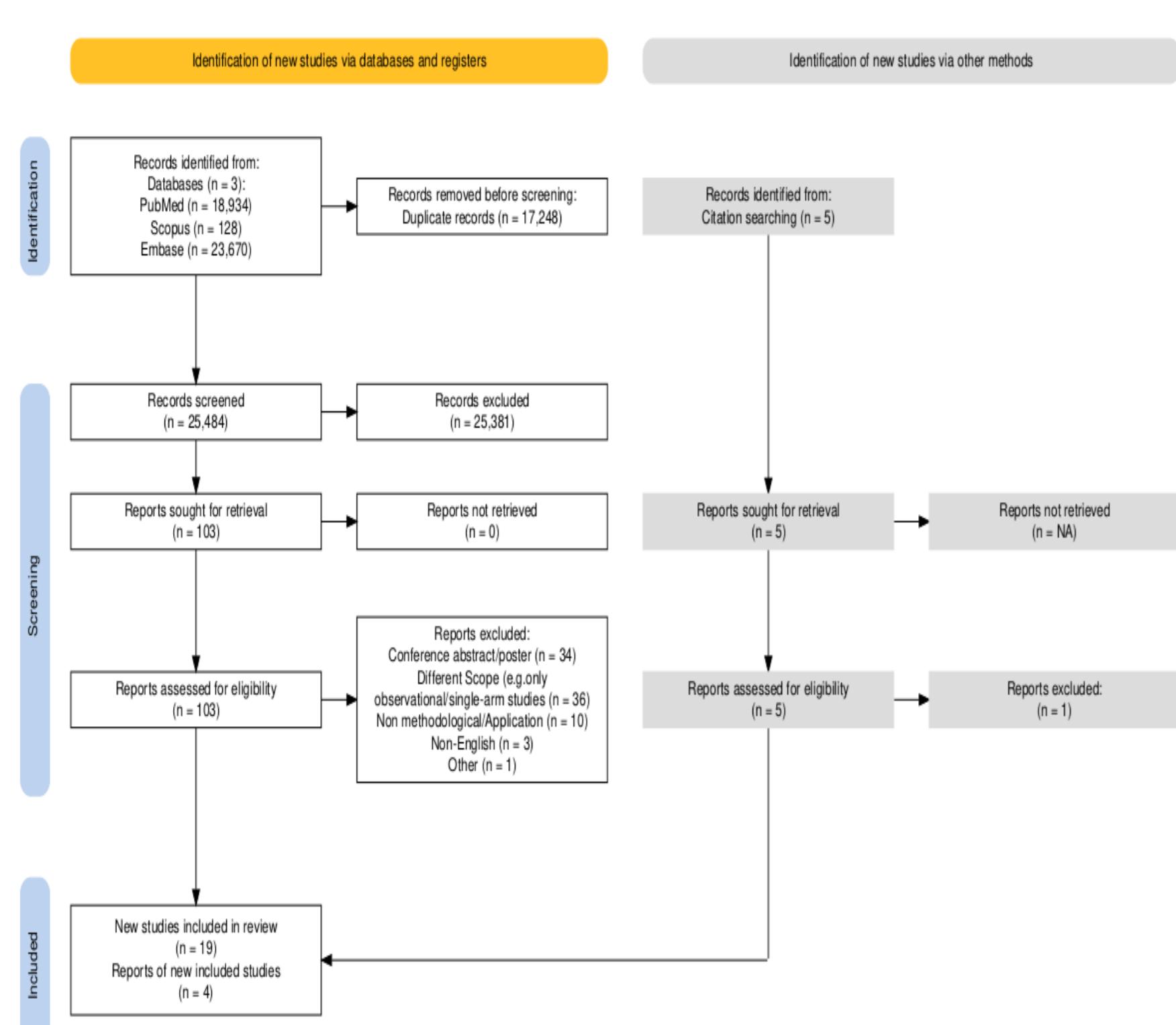
³School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece

⁴Methods Support Unit, Cochrane, UK

⁵Department of Psychology, University of Ioannina, Ioannina, Greece

✉ o.koutsiouroumpa@uoi.gr

🌐 www.esm.uoi.gr


2nd Conference in Biostatistics & Health Analytics
July 7-9, Aegina 2025

Background

Randomized clinical trials (RCTs) are considered the gold standard for evaluating the efficacy and safety of interventions and the synthesis of RCTs through meta-analysis (MA) is considered the strongest method for examining intervention effects. However, randomized evidence (RE) often suffer from low external validity, short follow-up time and limited feasibility. Non-randomized evidence (NRE), such as cohort studies and registries, can provide valuable insights as they may better reflect real-world conditions. We conducted a scoping review to identify the statistical methods used to combine RE and NRE within the MA or NMA frameworks.

Flowchart

We searched Embase, PubMed, and Scopus up until June 2024. The following PRISMA flowchart summarizes the selection of studies for our review.

Systematic Review finding

Of the 23 included studies, 17 were methodological papers focused on the integration of RE and NRE information in MA and NMA, while the remaining 6 were reviews of methods addressing the same topic. Among these 17 methodological studies:

- 11 (64.7%) focused on combining RE and NRE in standard MA
- 5 (29.4%) in NMA alone and
- 1 (5.9%) addressed both approaches

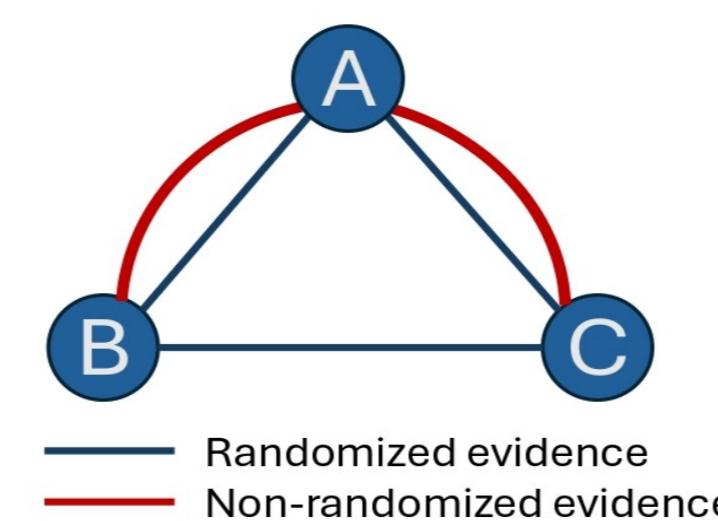
The majority - 15 studies (88.2%) - adopted a Bayesian framework. Regarding data types:

- 13 studies (76.4%) synthesized only aggregated data (AgD)
- 2 (11.8%) required individual participant data (IPD) and
- 2 (11.8%) incorporated both IPD and AgD

Random-effects NMA model

• Within-study model

$$y_{i,jk} \sim \text{Normal}(\theta_{i,jk}, s_{i,jk}^2)$$


• Between-study model

$$\theta_{i,jk} \sim \text{Normal}(\mu_{jk}, \tau^2)$$

• Key assumptions:

✓ Exchangeability: Differences in observed effects are due to random variation or sampling error.

✓ Consistency: The direct and indirect evidence for a treatment comparison should agree.

Identified methods

→ Naive data synthesis

All evidence (RCTs and NRE) is treated equally, without adjustment.

$$y_{i,jk} \sim \text{Normal}(\theta_{i,jk}, s_{i,jk}^2)$$

! No distinction between RCT and NRE, risk of bias (RoB) or design are not accounted for.

→ Design-adjusted analysis

Down-weights NRE by inflating their variance using a design-specific weight.

$$y_{i,jk} \sim \text{Normal}(\theta_{i,jk}, \frac{s_{i,jk}^2}{w_i})$$

Typically, $w_{RCT} = 1, w_{NRE} < 1$

Can be set to fixed values or random variables.

✓ Accounts for uncertainty in NRE

✗ Subjective specification of down-weighting

→ Using NRE as prior information

• Predictive prior with down-weighted variance

This approach constructs a predictive distribution from NRE estimates and incorporates it a prior for μ_{jk} , but downweights it by inflating the variance using a factor w_{jk}

$$\mu_{jk} \sim \text{Normal}(\hat{\mu}_{jk}^{NRE} + \beta_{jk}, \frac{\hat{V}_{jk}^{NRE}}{w_{jk}})$$

- If $\beta_{jk} = 0$ and $w_{jk} = 1$ full trust in NRE

- If $w_{jk} \ll 1$, NRE evidence is heavily downweighted.

✓ Handles uncertainty and possible bias

✗ Requires specification of prior parameters and less useful with few NRS

• Power Prior

This method down-weights the contribution of NRE by raising its likelihood contribution to a power between $a_i \in [0, 1]$

$$L(\mu | NRE) = \prod_{i=1}^k [L(\mu | NRE_i)]^{a_i}$$

✓ Flexible

✗ Choosing a_i values can be subjective

→ Three-level hierarchical model

First level, (within study differences)

$$y_{i,jk} \sim \text{Normal}(\theta_{i,jk}, s_{i,jk}^2)$$

Second level, (between study differences)

$$\theta_{i,jk} \sim \text{Normal}(\mu_{jk}^{design}, \tau^2)$$

Third level, (between design differences)

$$\mu_{jk}^{design} \sim \text{Normal}(\mu_{jk}, \tau_{design}^2)$$

✓ Accounts for design-specific effects and heterogeneity

✗ More complex, requires sufficient data per design

References

- [1] O. Efthimiou, D. Mavridis, T. P. A. Debray, M. Samara, M. Belger, G. C. Siontis, S. Leucht, and G. Salanti. Combining randomized and non-randomized evidence in network meta-analysis. *Statistics in Medicine*, 36:1210–1226, 2017.
- [2] H. Hussein, K. R. Abrams, L. J. Gray, et al. Hierarchical network meta-analysis models for synthesis of evidence from randomised and non-randomised studies. *BMC Medical Research Methodology*, 23:97, 2023.

Greece 2.0
NATIONAL RECOVERY AND RESILIENCE PLAN

Funded by the
European Union
NextGenerationEU

This project is carried out within the framework of the National Recovery and Resilience Plan Greece 2.0, funded by the European Union – NextGenerationEU (Implementation body: HFRI). Project Number: 015467