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• To summarize different methods to calculate uncertainty in the estimated overall effect size 
under the random-effects model.
• Can different methods impact our decision-making?

• To discuss  how different methods to calculate the uncertainty in the estimated overall effect 
size  can affect meta-analysis’ results.
• What are the properties of the different methods?

• To present real-life and simulation findings for calculating confidence intervals and prediction 
intervals for the overall effect size.
• Which method is the most appropriate to apply? 

• To identify factors that may control the calculation of a confidence interval by considering the 
results of comparative simulation and real-life data studies.
• Which methods are preferable than others and under which circumstances?

Aims of the presentation



Department of Primary Education, School of Education, University of Ioannina, Ioannina, Greece

Meta-analysis

Method 3

Method 1

Method 2

Study 1

Study 2

Study 3

Study 4

𝜇

Study 5

CI for 𝜇

• Plethora of methods exist to calculate 
uncertainty in the estimated overall 
effect size.

• The performance of a method may vary 
in various meta-analysis settings.

• The choice of the method calculation of 
uncertainty in the estimated overall 
effect size is important when conducting 
a meta-analysis. 

• An erroneous choice of the method could 
lead to misleading results.

Which is the 
most 

appropriate 
method to use?

𝑦𝑖 = 𝜃𝑖 + 𝜀𝑖

𝜀𝑖~𝛮 0, 𝑣𝑖

𝜃𝑖~𝛮 𝜇, 𝜏2

Ƹ𝜇𝑅𝐸 =
σ𝑦𝑖𝑤𝑖,𝑅𝐸

σ𝑤𝑖,𝑅𝐸

𝑣𝑎𝑟 Ƹ𝜇𝑅𝐸 =
1

σ𝑤𝑖,𝑅𝐸

𝑤𝑖,𝑅𝐸 =
1

𝑣𝑖+ො𝜏
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Cornel et al. Annals of Internal Medicine 2014

Wald type

Various CIs can lead to different conclusions
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Confidence Interval (CI) for the overall effect size 

 Accuracy = High Coverage Probability – P(μ∈ CI)
o The closer the coverage is to the nominal level (usually 0.95) the better the CI.

 Precision = Narrow CI
o Narrower CIs retaining the correct coverage are preferable because they

increase precision.

Estimation of 
summary effect size

Point 
Estimation

Interval 
Estimation

Desirable properties
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Our search identified:
• 69 relevant publications 
• 15 methods to compute a CI for the 

overall effect size (grouped in 7 broad 
categories).

The properties of the methods were 
evaluated in 31 papers:
• including 30 simulation studies and 32 

real-life data evaluations of ≥2methods. 

Categories

A. Wald-type (WT) CIs
a) Wald-type normal distribution (WTz)

b) Wald-type t-distribution (WTt)

c) Quantile approximation (WTqa) 

B. Hartung-Knapp/Sidik-Jonkman (HKSJ) CIs

C. Likelihood-based CIs

a) Profile likelihood (PL)

b) Higher-order likelihood inference methods

D. Henmi and Copas (HC) CIs

E. Biggerstaff and Tweedie (BT) CIs

F. Resampling CIs

a) Zeng and Lin (ZL)

b) Bootstrap

c) Follmann and Proschan (FP)

G. Bayesian Credible Intervals

The most popular 
technique is WTz

Literature Review of CI methods

Veroniki et al. Res Synth Methods. 2018. 
doi: 10.1002/jrsm.1319. 
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Confidence Interval methods

No Method Confidence Interval

1
Wald-type normal 
distribution (WTz) Ƹ𝜇𝑅𝐸 ± 𝑧0.975 𝑣𝑎𝑟 Ƹ𝜇𝑅𝐸

2
Wald-type t-distribution 

(WTt) Ƹ𝜇𝑅𝐸 ± 𝑡𝑘−1,0.975 𝑣𝑎𝑟 Ƹ𝜇𝑅𝐸

3
Quantile approximation 

(WTqa)

Ƹ𝜇𝑅𝐸 ± 𝑏𝑘 𝑣𝑎𝑟 Ƹ𝜇𝑅𝐸 , with 𝑏𝑘 the quantile approximation function of the 

distribution of the statistic 𝑀 =
ෝ𝜇𝑅𝐸−𝜇

𝑣𝑎𝑟 ෝ𝜇𝑅𝐸

4
Hartung-Knapp/Sidik-

Jonkman (HKSJ) 
Ƹ𝜇𝑅𝐸 ± 𝑡𝑘−1,0.975 σ𝑤,ෝ𝜇𝑅𝐸

2 , with σ𝑤,ෝ𝜇𝑅𝐸
2 = 𝑞 ∙ 𝑣𝑎𝑟 Ƹ𝜇𝑅𝐸 , 𝑞 =

𝑄𝑔𝑒𝑛

𝑘−1
, and 𝑄𝑔𝑒𝑛 =

σ𝑤𝑖,𝑅𝐸 𝑦𝑖 − Ƹ𝜇𝑅𝐸
2

5 Modified HKSJ
HKSJ, but use 𝑞∗ instead of 𝑞: 

𝑞∗ = max 1, 𝑞

6 Profile likelihood (PL) 
Profile log-likelihood for μ: 𝑙𝑛𝐿𝑝 𝜇 = 𝑙𝑛𝐿 𝜇, Ƹ𝜏𝑀𝐿

2 (𝜇) , 

𝑙𝑛𝐿𝑝 𝜇 > 𝑙𝑛𝐿𝑝 Ƹ𝜇𝑅𝐸 −
𝜒1,0.05
2

2
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Confidence Interval methods

No Method Confidence Interval

7, 8
Higher-order likelihood 

inference methods
The Bartlett-type adjusted efficient score statistic (BES) (No 7) and Skovgaard’s

statistic (SS) (No 8) use a higher-order approximation than the PL 

9 Henmi and Copas (HC) 
Hybrid approach: the FE estimate is accompanied by a CI that allows for τ2 under 

the assumptions of a RE model

10
Biggerstaff and Tweedie 

(BT) 

Ƹ𝜇𝑅𝐸
𝐵𝑇 ± 𝑧0.975 𝑣𝑎𝑟 Ƹ𝜇𝑅𝐸

𝐵𝑇 , with 𝑣𝑎𝑟 Ƹ𝜇𝑅𝐸
𝐵𝑇 =

1

(σ 𝑤𝑖,𝑅𝐸
𝐵𝑇 ) 2

σ 𝑤𝑖,𝑅𝐸
𝐵𝑇 2

𝑣𝑖 + Ƹ𝜏2 and 

𝑤𝑖,𝑅𝐸
𝐵𝑇 = 𝐸 𝑤𝑖,𝑅𝐸

11
Resampling methods: Zeng 

and Lin (ZL) 

Simulate values of τ2 using DL, then simulate estimated average effect sizes using 

the sampled 𝜏2 to calculate the weights in Ƹ𝜇𝑅𝐸 =
σ 𝑦𝑖𝑤𝑖,𝑅𝐸

σ𝑤𝑖,𝑅𝐸
. Repeat both aspects B 

times, get empirical distribution of Ƹ𝜇𝑅𝐸 and compute CI

12, 13
Resampling methods: 
Bootstrap confidence 

intervals 

Non-parametric bootstrap CI (No 12) with resampling from the sample itself with 
replacement, and Parametric bootstrap CI (No 13) with resampling from a fitted 

model
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Confidence Interval methods

No Method Confidence Interval

14
Resampling methods: 

Follmann and Proschan
(FP)

Permutation tests can be extended to calculate CIs for the effect size. CIs are
constructed by inverting hypothesis test to give the CI bounds - parameter values 

that are not rejected by the hypothesis test lie within the corresponding CI

15 Bayesian credible intervals 
Bayesian credible intervals for the overall effect size can be obtained within a 

Bayesian framework
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Comparative evaluation of the methods
i. Wald-type methods (WTz, WTt, WTqa)

 For large number of studies WTz, WTt, and WTqa perform well.

 WTz performs worse in terms of coverage for small number of studies (k<16) 
compared with the PL and the WTt methods.

 WTz and WTt depend on the number of studies, the τ2 estimator, and the τ2 

magnitude.

 Coverage of WTz has been found to be as low as 65% (at 95% nominal level) when 
I2=90% and k=2,3.

 Coverage of WTt may be below the 95% nominal level, but it becomes conservative 
(close to 1) when k is small.

 WTqa and WTt have on average similar coverage, but WTqa outperforms WTz, PL, 
and ZL CIs – but it is very conservative.

 WTqa has been criticized that it is very difficult to obtain suitable critical values bk

that apply to all meta-analyses.

1: Jackson et al J Stat Plan Infer 2010, 2: Brockwell and Gordon Stat Med 2007, 3: Langan et al RSM 2018, 4: Sanchez-Meca and Marin-
Martinez Psychol Methods 2008, 5: Jackson and Bowden Stat Med. 2009, 6: Zeng and Lin Biometrika. 2015

3

1, 2

1, 2, 3

2, 6

5

1

4

WTz: Wald type –
normal distr

WTt: Wald type – t 
distr

WTqa: Wald type –
quantile 
approximation

Implement in RevMan?

WTz Implemented

WTt

WTqa
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Comparative evaluation of the methods
ii. Hartung-Knapp/Sidik-Jonkman methods (HKSJ, modified HKSJ)

 HKSJ on average produces wider CIs with more coverage than the WTz and WTt methods.

 HKSJ has coverage close to the nominal level, is not influenced by the magnitude or 
estimator of τ2, and is insensitive to the number of trials.

 Simulations suggest HKSJ has good coverage for the odds ratio, risk ratio, mean difference, 
and standardized mean difference effect measures.

◻ Real-life data studies showed that the WTz method yielded more often statistically 
significant results compared with the HKSJ method. 

 HKSJ is suboptimal than the WTz and WTt CIs when binary outcomes with rare events
are included in a meta-analysis.

 Caution is needed for the HSKJ CI when <5 studies of unequal sizes are included in a meta-
analysis.

 In the absence of heterogeneity it may be: HKSJ coverage < WTz coverage.

1:IntHout et al BMC Med Res Methodol. 2014, 2: Langan et al RSM 2018, 3: Makambi J Biopharm Stat. 2004, 4: Hartung Biom J 1999, 5: 
Sanchez-Meca and Marin-Martinez Psychol Methods 2008, 6: Wiksten et al Stat Med. 2016, 7: Sidik and Jonkman Stat Med. 2002

3, 7

1, 2, 3

2

4, 6

1, 6

1, 2, 3, 4, 5

1

15,55,58,61,74,75,111

WTz: Wald type –
normal distr

WTt: Wald type –
t distr
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Comparative evaluation of the methods
ii. Hartung-Knapp/Sidik-Jonkman methods (HKSJ, modified HKSJ)

 The modified HKSJ is preferable when few studies of varying size and precision
are available.

 For small k (particularly for k=2) and small τ2 the modified HKSJ tends to be 
over-conservative.

1: Röver et al BMC Med Res Methodol. 2015, 2: Jackson et al Stat Med. 2017, 3: Viechtbauer Psychol Methods. 2015, 4: Brockwell and 
Gordon Stat Med. 2007, 5: Kosmidis Biometrika. 2017, 6: Noma Stat Med 2011, 7: Guolo & Varin Stat Methods Med Res. 2015

1

1, 2, 3

15,55,58,61,74,75,111

Implement in RevMan?

HKSJ

mHKSJ
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Comparative evaluation of the methods
iii. Likelihood-based methods (PL, BES, SS)

 PL has higher coverage closer to the nominal level than WTz and WTt, even when 
k is relatively small (𝑘 ≤ 8).

 BES improves coverage over WTz, WTt, and PL CIs as τ2 increases and/or k 
decreases.

 SS yields similar results with BES, and has better coverage than WTz and PL CIs.

 Caution is needed for k≤5 as BES tends to be over-conservative.

1: Röver et al BMC Med Res Methodol. 2015, 2: Jackson et al Stat Med. 2017, 3: Viechtbauer Psychol Methods. 2015, 4: Brockwell and 
Gordon Stat Med. 2007, 5: Kosmidis Biometrika. 2017, 6: Noma Stat Med 2011, 7: Guolo & Varin Stat Methods Med Res. 2015

4, 5

6, 7

6

6

15,55,58,61,74,75,111

WTz: Wald type –
normal distr

WTt: Wald type – t 
distr

PL: Profile Likelihood

BES: Bartlett-type 
adjusted efficient score 
statistic 

SS: Skovgaard’s statistic

Implement in RevMan?

PL ?

BES ?

SS ?
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Comparative evaluation of the methods
iv. Henmi and Copas method (HC)

 For k>10 HC yields better coverage than WTz, HKSJ, PL, and BT methods, 
irrespective the absence/presence of publication bias .

 For k<10 the HKSJ and PL methods perform better than HC, WTz, and BT methods.

v. Biggerstaff and Tweedie method (BT)

 WTz and BT methods have comparable coverage (below the nominal level), but 
coverage increases for the exact weights.

vi. Resampling methods (ZL, FP)

 ZL outperforms both WTz and PL for small k in terms of coverage.

 FP controls coverage better than WTz, WTt, PL, and is closely followed by BES.

 BES is slightly more powerful than FP especially for small k.

1: Henmi and Copas Stat Med. 2010, 2: Brockwell and Gordon Stat Med 2007, 3: Preuß and Ziegler Methods Inf 
Med. 2014, 4: Zeng and Lin Biometrika. 2015, 5: Huizenga et al Br J Math Stat Psychol. 2011

2, 3

1

15,55,58,61,74,75,111

1

4

5

5

WTz: Wald type – normal distr
WTt: Wald type – t distr
HKSJ: Hartung-Knapp/Sidik-Jonkman
PL: Profile Likelihood
BES: Bartlett-type adj score statistic 
ZL: Zeng and Lin
FP: Follmann and Proschan

Implement in RevMan?

HC

BT

ZL ?

FP ?
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Comparative evaluation of the methods
vii. Bayesian credible intervals 

 Bayesian intervals produce intervals with coverage closer to the nominal level 
compared to the HKSJ, modified HKSJ, and PL CIs.

 Bayesian intervals tend to be smaller than the HKSJ CI even in situations with similar 
or larger coverage.

 The performance of the Bayesian intervals may vary depending on the prior assigned 
to the between-study variance.

1: Friede et al RSM 2017, 2: Bodnar et al Stat Med. 2017, 3: Lambert et al Stat Med. 2005 

15,55,58,61,74,75,111

1, 2

3

1

HKSJ: Hartung-
Knapp/Sidik-
Jonkman

PL: Profile 
Likelihood

Implement in RevMan?

Bayes ?
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Software for CIs for the overall effect size

CI Method Software CI Method Software CI Method Software

WTz

CMA, Excel 
(MetaEasy, 

MetaXL), Meta-
Disc, Metawin, 

MIX, MLwin, Open 
Meta Analyst, 

RevMan, R, SAS, 
Stata, SPSS

PL

Excel 
(MetaEasy), 
HLM, Meta-

Disc, MLwin, R, 
SAS, Stata

Bootstrap 
(parametric and 
non-parametric)

Metawin, MLwin, 
R, Stata

WTt
Excel (MetaEasy), 

R, SAS
BES - FP

Excel (MetaEasy), 
R, Stata

WTqa - SS R ZL -

HKSJ CMA, R HC R Bayes
MLwin, R, SAS, 

BUGS, OpenBUGS, 
WinBUGS

Modified 
HKSJ

Stata BT R
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Illustrative example

• The WTz CI lies among the narrowest
intervals.

• The Skovgaard statistic CI and the 
Bayesian CrI lie among the largest
intervals.

• For very low (Sarcoma) and low 
(Cervix2) I2 values, the modified HKSJ CI 
has the largest width across all intervals.

• For moderate I2 value (NSCLC1) the HC
CI is associated with the highest 
uncertainty around the overall effect 
size.

• For substantial I2 value (NSCLC4)the 
HKSJ is the widest CI.
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Prediction Interval

Riley et al approach

-3 -1.5 0 1.5 3

Log Hazard Ratio

Study 11
Study 10
Study 9
Study 8
Study 7
Study 6
Study 5
Study 4
Study 3
Study 2
Study 1

0.37 [ 0.08,  0.67]
0.16 [-0.30,  0.61]
0.15 [-0.56,  0.87]

-0.14 [-0.45,  0.18]
-0.18 [-0.54,  0.17]
-0.20 [-0.51,  0.11]
-0.33 [-0.85,  0.18]
-0.40 [-0.77, -0.03]
-0.55 [-1.24,  0.15]
-0.80 [-1.25, -0.35]
-1.59 [-2.35, -0.83]

-0.27 [-0.52, -0.01]

Log Hazard Ratio [95% CI]

PrI: [-1.02, 0.49]
Higgins et al approach

Guddat et al approach I2=75 %, τ2=0.132

Studies • A prediction interval provides a predicted 
range for the true effect size in a new study:

ො𝜇𝑅𝐸 ± 𝑡𝑘−1,0.975 Ƹ𝜏2 + 𝑣𝑎𝑟 ො𝜇𝑅𝐸

• Conclusions drawn from a prediction interval are 
based on the assumption the study-effects are 
normally distributed

• Although prediction intervals have not often been employed in practice they provide useful 
additional information to the confidence intervals.
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Prediction Interval

• Prediction intervals are particularly helpful when excess heterogeneity exists, and the 
combination of individual studies into a meta-analysis would not be advisable.

• The 95% prediction interval in >70% of the statistically significant meta-analyses in 
the Cochrane Database with Ƹ𝜏2 > 0, showed that the effect size in a new study could 
be null or even in the opposite direction from the overall result. 

• The 95% prediction interval is only accurate when heterogeneity is large (I2>30%) 
and the study sizes are similar.

• For small heterogeneity and different study sizes the coverage of prediction interval 
can be as low as 78% depending on the between-study variance estimator.

1: IntHout et al BMJ Open 2016, 2: Partlett and Riley Stat Med. 2017 

1

2

2
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In Summary

• The WTz CI using the DL estimator for the between-study variance, are commonly used 
and are the default option in many meta-analysis software.

• The accuracy of the WTz CI is not optimal, as coverage can deviate considerably from the 
nominal level in small meta-analyses.

• Likelihood-based CIs yield coverage closer to the nominal level vs. WTz, but are 
computationally more demanding than WTz.

• Overall, studies suggest that the HKSJ method has one of the best performance profiles –
performs well even for k<10 and is robust across different τ2 estimators and values.

• But, for Ƹ𝜏2 = 0 the HKSJ CI is too narrow. In such cases, the modified HKSJ can be used.

• Caution is also needed in meta-analyses with rare events, with <5 studies, and different 
study precisions – the modified HKSJ can be used, but not for k=2.
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• The likelihood based methods (SS and BES) have good coverage properties, but have 
never been compared directly to HKSJ.

• Bayesian intervals may be considered preferable to frequentist intervals in situations 
where prior information is available.

• The computation of prediction intervals in meta-analysis is valuable. The use of k-1 
degrees of freedom rather than k-2 to calculate prediction intervals may be preferable, 
since the CIs using a t-distribution (e.g., WTt and HKSJ CIs) and prediction intervals will 
be identical when Ƹ𝜏2 = 0.

• We suggest conducting a sensitivity analysis using a variety of methods (with at least 2 to 
3 methods) to assess the robustness of findings and conclusions, especially in a meta-
analysis with fewer than 10 studies.

In Summary
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