

ΙΑΤΡΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ

A selection model to explore whether publication bias is more likely in placebo-controlled trials compared to multi-arm and head-to-head trials

Mavridis, D., Welton, N., Sutton, A. and Salanti, G.

21st Cochrane Colloquium, Quebec, Canada

ERC Grant IMMA 260559

I have no actual or potential conflict of interest in relation to this presentation

Meta-analysis and Publication Bias

• Published evidence may represent a **biased sample of the overall evidence**

Trials with **'exciting' results** and **big trials** are more probable to be published

Publication Bias may exaggerate the effect of a treatment

Network meta-analysis and PB

- 86% of Cochrane reviewers acknowledge the need for indirect comparisons
 - Abdelhamid et al RSM 2012

In summary, NMA

- Compares many competing treatments for the same healthcare problem and allows a ranking of all available treatments
- Includes multi-arm studies
- The design of a trial (set of treatments compared) may impact on its likelihood to be published

Abdelhamid, A.S. et al (2012). Use of indirect comparison methods in systematic reviews : a survey of Cochrane review authors. *Reserach Synthesis Methods*, **3**(2), 161-176.

Three antiplatalet interventions *Outcome:* OR for failure of vascular graft or arterial patency

Chootrakool,H., Shi,J.Q. and Yue,R. (2011). Meta-analysis and sensitivity analysis for multi-arm trials with selection bias. *Statistics in Medicine*, **30**(11), 1183-1198.

First design – 7 studies

Second design – 14 studies

Third design -4 studies

Fourth design – 6 studies

Assumption: Different study designs could be associated with different probabilities of being selected for publication

Contour-enhanced funnel plots

Chaimani,A. and Salanti,G. (2012). Using network meta-analysis to evaluate the existence of small study effects in a network of interventions. *Reserach Synthesis Methods*, **3**(2), 161-176. Chootrakool,H., Shi,J.Q. and Yue,R. (2011). Meta-analysis and sensitivity analysis for multi-arm trials with selection bias. *Statistics in Medicine*, **30**(11), 1183-1198.

Selection model

- Models the mechanism by which trials are selected for publication
 - Heckman's selection model (1979) introduced in the metaanalysis literature by Copas and Shi (2000)
 - Mavridis et al (2013) extended the model to star-network meta –analysis
 - Each trial has probability p_i of being published
 - Bias arises when effect size y_i is correlated with p_i
 - Very large trials have p_i close to one

Copas, J.B. et al (2000). *Meta-analysis, funnel plots and sensitivity analysis*. Biostatistics, 1(3), 247-262. Heckman, J.J. (1979). *Sample selection bias as a specification error*. Econometrica, **47**, 153-161. Mavridis et al (2013). *A fully Bayesian application of the Copas selection model for publication bias extended to network meta-analysis*. Statistics in Medicine, **32**(1), 51-66.

NMA of unconditional treatment effects

 $\mu_{DA} = \mu_{PA} - \mu_{PD}$

NMA of unconditional treatment effects

 μ_{DA}

Consistency assumption

 $\mu_{DA} = \mu_{PA} - \mu_{PD}$

NMA selection model

Consistency assumption

 $\mu_{DA|Published} = \mu_{PA|Published} - \mu_{PD|Published}$

Parameters in NMA selection model

- z_i the propensity of publication - $z_i > 0$ the effect size y_i is observed
- We write z_i as a function of the study precision, and to be estimated we need to make an assumption about the probability of a large and small study to be published for each design $-P^{low}$
 - $-P^{large}$

Parameters in NMA selection model

- z_i the propensity of publication
- z_i is correlated with y_i

If the estimated ρ is away from null, then this is a sign of selection bias

- for harmful outcomes, $\rho < 0$
- for beneficial outcomes $\rho > 0$

For three-arm trials we may have three correlations

$$\rho^{PD}s_i^{PD} - \rho^{PA}s_i^{PA} = \rho^{AD}s_i^{AD}$$

Impact of study design

Is publication bias more probable in placebocontrolled trials rather than in head-to-head and multi-arm studies?

Is ρ different across trial designs?

What is the impact on the treatment ranking?

Three antiplatalet interventions *Outcome:* OR for failure of vascular graft or arterial patency

Are $\rho_{PA,} \rho_{PD,} \rho_{DA,} \rho_{APD}$ different?

Selection model scenarios

	No bias	Moderate selection bias	Severe selection bias	Severe selection bias for all designs			
Design		Selection Probabilities					
Aspirin vs Placebo		P ^{low} ∼U(0.4,0.5) P ^{large} ∼U(0.7,0.8)	$P^{low} \sim U(0.1, 0.2)$ $P^{large} \sim U(0.4, 0.5)$	$P^{low} \sim U(0.1, 0.2)$ $P^{large} \sim U(0.4, 0.5)$			
Dip+Asp vs Placebo	$P^{low} = 1$	$P^{low} = 1$ $P^{large} = 1$	$P^{low} = 1$ $P^{large} = 1$	$P^{low} \sim U(0.1, 0.2)$ $P^{large} \sim U(0.4, 0.5)$			
Dip+Asp vs Aspirin	$P^{large} = 1$	$P^{low} = 1$ $P^{large} = 1$	$P^{low} = 1$ $P^{large} = 1$	$P^{low} \sim U(0.1, 0.2)$ $P^{large} \sim U(0.4, 0.5)$			
Dip+Asp vs Aspirin vs Placebo		$P^{low} = 1$ $P^{large} = 1$	$P^{low} = 1$ $P^{large} = 1$	P ^{low} ∼U(0.1,0.2) P ^{large} ∼U(0.4,0.5)			

Results: correlation ρ

	No selection	Moderate selection	Severe selection	Severe selection bias for
	bias 🗸	bias	bias	all designs
A animin wa	$ ho^{PA}\cong 0$	$ ho^{PA}=-0.55$	$\rho^{PA} = -0.60$	$\rho^{PA} = -0.69$
Placebo	(-0.95,0.95)	(-0.98,0.28)	(-0.99,-0.01)	(-0.99,-0.06)
Dip +Asp vs	$ ho^{PD}\cong 0$	$ ho^{PD}\cong 0$	$\rho^{PD} = -0.01$	$\rho^{PD} = -0.09$
Placebo	(-0.95,0.95)	(-0.95,0.95)	(-0.95,0.95)	(-0.82,-0.77)
Asp+	$\rho^{DA} = 0.01$	$ ho^{DA}=-0.01$	$ ho^{DA}\cong 0$	$\rho^{DA} = -0.22$
Dip vs Aspirin	(-0.95,0.95)	(-0.95,0.95)	(-0.94,0.95)	(-0.71,-0.36)
	$ ho^{PA}=0.02$	$ ho^{PA}=-0.02$	$\rho^{PA} = -0.03$	
Dip+Asp vs	(-0.39,0.39)	(-0.14,0.14)	(-0.14,0.13)	
Aspirin vs	$ ho^{PD}=0.04$	$ ho^{PD}=0.10$	$ ho^{PD} = 0.12$	$ ho^{ABC} = -0.53$
Placebo	(-0.94,0.94)	(-0.63,0.63)	(-0.63,0.64)	(-0.82, -0.01)
	$\rho^{DA} = 0.02$	$ ho^{DA}=0.10$	$\rho^{DA} = 0.13$	
	(-0.54,0.54)	(-0.670.67)	(-0.67,0.67)	

Results: OR and 95% CrI

	No bias	Moderate selection bias	Severe selection bias	Severe bias for all designs
Placebo	reference	reference	reference	reference
Aspirin	→ 0.50	→ 0.53	→ 0.58	→ 0.64
	(0.37,0.64)	(0.40,0.69)	(0.43,0.74)	(0.45,0.86)
Aspirin + –	→ 0.56	→ 0.57	0.58	→ 0.66
dipyridamole	(0.45,0.69)	(0.45,0.70)	(0.46,0.71)	(0.47,0.90)
Heterogeneity τ	0.30	0.32	0.31	0.36
	(0.04,0.55)	(0.11,0.57)	(0.06,0.55)	(0.17,0.61)

If a severe selection model scenario is assumed only for Aspirin vs Placebo studies, Aspirin is similarly effective with placebo

Summary

The suggested selection model

- avoids assumptions about p-values and probability of publication
- estimates intervention effects under publication bias scenarios
- Various assumptions can be explored (e.g. all placebo-control trials are equally likely to be published)
- Extend the selection model to account for other characteristics associated with publication bias
 - E.g. study quality, conflict of interest etc.